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Abstract—Visual surveillance using multiple cameras has attracted increasing

interest in recent years. Correspondence between multiple cameras is one of the

most important and basic problems which visual surveillance using multiple

cameras brings. In this paper, we propose a simple and robust method, based on

principal axes of people, to match people across multiple cameras. The

correspondence likelihood reflecting the similarity of pairs of principal axes of

people is constructed according to the relationship between ”ground-points” of

people detected in each camera view and the intersections of principal axes

detected in different camera views and transformed to the same view. Our method

has the following desirable properties: 1) Camera calibration is not needed.

2) Accurate motion detection and segmentation are less critical due to the

robustness of the principal axis-based feature to noise. 3) Based on the fused data

derived from correspondence results, positions of people in each camera view can

be accurately located even when the people are partially occluded in all views. The

experimental results on several real video sequences from outdoor environments

have demonstrated the effectiveness, efficiency, and robustness of our method.

Index Terms—Correspondence between multiple cameras, principal axes, people

tracking.
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1 INTRODUCTION

IN recent years, visual surveillance [32] using multiple cameras has
attracted much attention in the computer vision community. This
is because by using multiple cameras, the area of surveillance is
expanded and information from multiple views is extremely
helpful to handle many issues such as occlusion, etc. However,
visual surveillance using multiple cameras also brings a number of
problems such as camera installation [26], calibration of multiple
cameras [13], [27], correspondence between multiple cameras [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], automated camera
switching [9], and data fusion [28], [29], [30], [31], etc. In this paper,
we focus on correspondence between multiple cameras. Corre-
spondence between multiple cameras involves at the same time
instant finding correspondences between objects in the different
image sequences. Only after correspondence between multiple
cameras is well constructed can the information from multiple
cameras be fused. So, it is one of the most important and basic
problems in visual surveillance using multiple cameras. As people
activities are of key interest in monitored scenes, in this paper, we
mainly consider correspondence between multiple cameras for
tracking people and improving the tracking of people when the
people are within the common ground plane of the multiple views.

Although correspondence of multiple cameras is a newly
emergent research topic, in recent years, some attempts have been
made to investigate this problem. The existing methods for establish-
ing correspondences can be classified [1], [2] according to the types of
employed features, whether the cameras are calibrated or not, and
whether the correspondences are region-based or point-based. The
following sections describe existing methods in order to provide the
context for our own work.

1.1 Region-Based Methods

Region-based methods generally regard people as regions and use
the features of the regions to match people in multiple views. Color
is a popular region cue to generate correspondence across views.
Orwell et al. [3] and Krumm et al. [4] use color histograms to match
people in different views. Mittal and Davis [5] apply Gaussian
color models to solve the problem of correspondence across
multiple cameras. Chang et al. [1] establish cross camera
correspondence by combining epipolar geometry, landmarks,
height, and color mapping between two cameras.

It is natural and simple to use color information to construct
correspondence between multiple cameras. However, color-based
correspondence across multiple cameras is highly unreliable. For
one thing, it greatly relies on the colors of people’s clothes. When
different people have similarly colored clothes, this method may
produce wrong correspondence. For another, viewpoint difference
and lighting variations may cause the same person to be observed
with different colors in different cameras. If a person’s clothing is
white at the front and black at the back, then the observations of
the person in two views may be regarded as arising from two
different people.

1.2 Point-Based Methods

A more applicable scheme for constructing multiple camera
correspondence may be to match feature points of objects in each
view based on geometric constraints. Feature point-based corre-
spondence methods can be further divided into two subclasses:
3D and 2D methods, according to the types of geometric constraints
which are used.

1. Three-dimensional methods. There are two strategies in
3D methods to establish correspondence:

. One is to transform all feature points into the same
3D space and then match the feature points based on the
principle that corresponding feature points in different
views are projections of the same 3D point. In [6], [7],
object centroids are taken as feature points and
correspondence is established by estimating the corre-
sponding 3D centroids in the world coordinate system.
In [8], all cameras are calibrated and the 3D environ-
ment model is known beforehand. Correspondence
across views is achieved for people who have similar
estimated 3D locations.

. The second strategy uses 3D epipolar constraints for
matching. In [9], only the relative calibration between
neighboring cameras is used to derive epipolar con-
straints and correspondence is established by matching
a set of feature points along the midline of the upper
part of a human body, based on the epipolar constraints.

The above strategies both need prior calibration of the
cameras. Furthermore, feature points of a person extracted
from different views do not always correspond to the same
physical 3D point. This may make the correspondence of
feature point pairs ambiguous.

2. Two-dimesional methods. To overcome the disadvan-
tages of 3D methods, some methods using 2D information
have been presented to establish correspondence between
multiple cameras. Khan et al. [2], [10] use the points
located on feet to match people in multiple views based on
the homography constraint defined by the ground plane.
However, in real applications, the points of people’s feet
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may not be robustly or accurately detected or even may be
invisible due to occlusions.

Black and Ellis [11] provide the transfer error, based on a
homography constraint, for the correspondence between the
centroids in different views. The performance of this method
deteriorates if only part of a person is visible or detected.

The aforementioned current point-based methods, either
3D or 2D, are easily influenced by noise. Accurate motion
detection is required for these methods. If the motion is not
well-segmented or only part of a person is visible due to
occlusion, the feature points may be unreliable and, thus, the
performance of the correspondence is degraded.

1.3 Our Method

In this paper, we propose a simple and robust method to match
people in multiple views. In our method, the principal axis of each
person, i.e., the symmetric axis of the human body, is detected in
image planes and used to match people across views. Our method
has the following main contributions:

. We use principal axes of people as features for the
correspondence. Estimation of principal axes does not rely
on accurate motion detection because the influence of the
error of motion detection is counteracted by the symme-
trical distributions of the error along the principal axis.

. We propose a Least Median of Squares-based algorithm to
detect principal axes of people under three situations:
“isolated,” “in a group,” and “occluded.”

. We find that the intersection of the principal axis of a
person in a view and the line acquired by transforming the
principal axis of this person from another view to the first
view using a homography corresponds the “ground-point”
of this person in the first view. This “ground-point” is the
intersection point of the principal axis and the ground
plane in the first view.

. Based on the above property, we define the correspon-
dence likelihood reflecting the correspondence similarity
of principal axis pairs. Accordingly, the algorithm for
matching between multiple cameras is presented.

. Correspondence results are further used to improve the
tracking results while the “ground points” of the tracked
people are within the common ground plane of the multiple
views. This fusion of data makes it possible to robustly find
and track the positions of people in different views, even
when the people are partially occluded in all views.

The remainder of this paper is organized as follows: Section 2
gives an overview of our method. Section 3 describes the detection
of principal axes and “ground-points” under different situations.
Section 4 presents how principal axes are used to construct the
correspondence of people across multiple cameras. Section 5
covers how the information from multiple cameras is fused to
improve the tracking results. Section 6 shows experimental results.
The last section summarizes the paper.

2 OVERVIEW OF OUR METHOD

The motivation of this paper is to construct a robust method to
match people across multiple cameras. We select principal axes of
people as the feature for this matching. As foreground pixels
corresponding to a person are symmetrically distributed along the
principal axis, the errors of motion segmentation are also
distributed symmetrically. This reduces the influence of the errors
of motion segmentation on the detection of the principal axis of the
person. So, the principal axis feature is robust to noise.

As mentioned in Section 1, we find that the intersection of the
principal axis of a person in a view and the line obtained by
transforming, using the homography, the principal axis of the
same person from another view to the first view is the “ground-
point” of the person in the first view. So, we can use the distance
between the detected “ground-point” of a principal axis in a view
and the intersection between this principal axis and the line
obtained by transforming a principal axis from another view to the
first view to evaluate the degree of matching between these two
principal axes in the two views.

Fig. 1 shows the process of detecting principal axes of people in a

single camera. Based on the segmented foreground regions, people

are distinguished from others and are further classified into three

categories: isolated people, a group of people, and people under

occlusion. Principal axes are detected in these three situations. The

tracking of people is based on their “ground-points.” In the detection

of “ground points” of people in a group or under occlusion, the

results of prediction in the tracking module are employed.
Fig. 2 shows the process of people correspondence between

multiple cameras. The correspondence between multiple cameras

is based on the detection of principal axes of people and tracking of

people in each single camera. In the matching of principal axes, a

homography, rather than camera calibration, is used as the

geometrical constraint. The correspondence depends on the

intersection of a principal axis in a view and the line obtained by

transforming a principal axis from another view to the first view.

The correspondence results are fed back to the single camera

tracking module, i.e., the intersection of the principal axis of a

person in one view and the line obtained by transforming the

principal axis of the person from another view to the first view is

used to update the detected “ground-point” of this person in the

first view. Such feedback makes the tracking and correspondence

robust (see Section 5 for more details).

3 DETECTION OF PRINCIPAL AXES IN A SINGLE

CAMERA

In this section, motion segmentation, object classification, detection

of principal axes of people, tracking of people, and determination

of “ground-points” in a single camera are described.
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Fig. 1. Overview of principal axis detection in a single camera.



3.1 Motion Segmentation and Object Classification

In this paper, a simple background subtraction algorithm taken
from [14] is used to extract foreground regions corresponding to
moving objects. Other more adaptive and complex background
subtraction methods [15], [16], [17] may be implemented to obtain
better results. However, to verify the robustness of our method, we
just use the simple algorithm.

Objects other than people, such as vehicles, may move in a
monitored scene. It is necessary to use a simple classifier to
distinguish people from other objects. We only consider the
classification of people and vehicles. Based on the fact that a
person’s shape can be represented by its projection histogram [20],
we use the vertical projection histogram [18], [22] to distinguish
people from vehicles. The vertical projection histogram is acquired
by projecting foreground pixels onto the horizontal coordinate of
the image. Let Iðx; yÞ be a binary image which represents a
detected motion region, where x and y are, respectively, the
horizontal and vertical coordinates. Let “height” and “width” be,
respectively, the height and width of this motion region. The
vertical projection histogram h is given by:

hðxÞ ¼
Xheight

y¼1
Iðx; yÞ; x 2 ½1; width�: ð1Þ

The Y-coordinate of the vertical projection histogram is the total
number of pixels with the same horizontal coordinate. The spread
of a vertical projection histogram is defined as:

Spread ¼
Pwidth�1

x¼1 hðxþ 1Þ � hðxÞj jPwidth
x¼1 hðxÞ

: ð2Þ

It is obvious that the vertical projection histogram of an isolated
person is steeper than that of a vehicle, so the spread of an
isolated person is higher than that of a vehicle. As the edge of the
region of foreground pixels of a vehicle is smoother than that of a
group of people, the spread of a group of people is also higher
than that of a vehicle. A spread threshold is defined to
distinguish people from vehicles.

If a foreground region is classified as people, we need to further
decide whether it is an isolated person or a group of people by
analyzing the number of significant peaks in its vertical projection
histogram. This is detailed in Section 3.2.2.

3.2 Detection of Principal Axes

According to real applications, we consider the detection of
principal axes of people under three situations: “isolated,” “in a
group,” and “under occlusion.”

3.2.1 Principal Axis of an Isolated Person

In this paper, we apply the Least Median of Squares [21] to
determine the principal axis of an isolated person based on the
global shape constraint that a human body is typically close to
symmetrical around the principal axis. The principal axis is
determined by minimizing the median of squared perpendicular
distances between the foreground pixels and a vertical axis. Let
DðXi; lÞ be the perpendicular distance between the ith foreground

pixel Xi and an axis l to be determined, as shown in Fig. 3. The
principal axis L is estimated by:

L ¼ arg min
l
mediani DðXi; lÞ2

n o
: ð3Þ

3.2.2 Principal Axes of People in a Group

Two or more people, whose image motion regions overlap each
other producing one foreground region, are regarded as a group.
Determination of the principal axes of people in a group includes
the following two stages:

. The whole region of a group is segmented into subregions
where each subregion corresponds an individual.

. The principal axis of each individual is determined.

The principal axis of a segmented individual can be determined
in the same way as detecting the principal axis of an isolated
person. So, segmentation of individuals is critical in the determi-
nation of principal axes of people in a group. As vertical projection
histograms can represent the shapes of 2D binary silhouettes,
referring to [22], we use the vertical projection histogram which
has been introduced in Section 3.1 to segment individuals based on
the fact that a distinct peak region between two major valleys in
the histogram corresponds to an individual. A distinct peak region
should satisfy two conditions:

. All peaks within the distinct peak region are above a peak
threshold ðPT Þ.

. Two valleys of the distinct peak region are lower than a
valley threshold ðCT Þ.

Thresholds PT and CT are selected empirically.
Fig. 4 shows an example of the detection of principal axes of

people in a group. The input image, the detected foreground
region, and the corresponding vertical histogram are shown,
respectively, in Figs. 4a, 4b, and 4c. In Fig. 4c, a sign “+” represents
a peak, a sign “o” a valley, the solid line the peak threshold ðPT Þ,
and the dashed line the valley threshold ðCT Þ. In this histogram,
there are three distinct peak regions. According to these regions,
three individuals are segmented, as shown in Fig. 4d, and their
principal axes are correctly detected, as shown in Fig. 4e.
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Fig. 2. Overview of people correspondence between multiple cameras.

Fig. 3. Principal axis of an isolated person.



3.2.3 Principal Axes of People under Occlusion

To accurately detect the principal axis of an occluded person, it is
necessary to segment the foreground pixels of the person from the
whole foreground region. The methods for color pixel classification
for segmenting objects in general include color template-based ones
[23], color histogram-based ones [33], and kernel density-based ones
[19]. The color template-based methods record the spatial color
information of each pixel of each human body and, thus, have high
reliability in classifying foreground pixels, although there is a large
amount of redundant information in the template. Considering the
reliability, we select the color template-based method to segment
people under occlusion. The method is derived from [23]. The color
model ðMiÞ of object i consists of a color variable CiðXÞ, which
records the rgb color of each pixel X of object i, and an associated
probability mask P ½MiðXÞ�, which records the likelihood of object i
being observed at pixel X. A color model is initialized when a new
object is tracked and then updated in each new frame. The
coordinates of pixel X are normalized to the current object position
in image coordinates. The color of each pixel of the moving object is
approximated with a Gaussian distribution. Let IðXÞ be the
observed color at pixel X. The probability density p½IðXÞjMiðXÞ�
of IðXÞ under the distribution in color model i is then acquired.
During occlusion, the segmentation of foreground pixels is
formulated as a classification problem which is to determine the
model to which each foreground pixel belongs. Using the Bayesian
rule, the probability P ½MiðXÞjIðXÞ� of model i, given that IðXÞ is
observed, is determined. Pixel X is classified to the model m if the
probability of model m given pixel X is maximal.

After occluded people are segmented, their principal axes are
determined as the same way as detecting the principal axes of
“isolated” persons.

3.2.4 Distinguishing between the Three Situations

In Sections 3.2.1, 3.2.2, and 3.2.3, we describe the methods for
detecting the principal axes of people under three situations:
“isolated,” “in a group,” and “under occlusion.” The remaining
question is how to distinguish between these three situations.
These situations can be distinguished by object correspondence
relationships between consecutive frames in the tracking process.
An object tracked in previous frames is defined as a “tracked
object” and a motion region detected in the current frame is
defined as a “detected object.” The three situations are distin-
guished using the following principles:

1. If only one “tracked object,” which is a person in the
previous frame, corresponds to a “detected object” and
only one significant peak region is detected in the vertical
histogram of the “detected object,” the “detected object” is
classified as an isolated person.

2. When more than one “tracked objects,” each of which is a
person, in the previous frame correspond to a “detected
object” in the current frame, the “detected object” is
potentially a group of people. In this case, we first use the
method in Section 3.2.2 to segment the “detected object.” If
the method fails, we classify the case as “under occlusion”
and use the method in Section 3.2.3 to detect the principal
axes of the people under occlusion.

3. If more than one “tracked objects” correspond to a
“detected object” and these “tracked objects” include not
only people but also objects other than people, we treat this
case as “under occlusion.”

3.3 Tracking

Tracking is, in fact, the construction of correspondence relation-

ships between “tracked objects” in previous frames and “detected

objects” in the current frame. A filter is used to predict the states of

“tracked objects” in the current frame according to the states of the

“tracked objects” in previous frames. Then, the predicted states are

compared with the observations of the “detected objects” and the

“detected object” corresponding to each “tracked object” is found.

The states of the “tracked objects” in the current frame are updated

using the corresponding “detected objects.”
In this paper, the Kalman filter is used to track people. The state of

a person is ðx; y; vx; vyÞ, where ðx; yÞ is the position of the person in the

image plane and ðvx; vyÞ is the velocity of the person. The observation

of a person is its position ðx; yÞ. The position of an individual in a

frame is evaluated with its “ground-point” on the image plane.

3.4 Detection of “Ground-Points”

In our method, the segmented foreground regions corresponding to

individuals and the results of prediction in the tracking process are

used to estimate the ”ground-points” of detected principal axes.
For a detected principal axis, we find the intersection of the

principal axis and the bottom line of the bounding box which

contains the foreground pixels of the corresponding individual. If

the distance between this intersection and the predicted position of

this individual is small, this intersection is taken as the observation of

the “ground-point” of the principal axis. Otherwise, the intersection

of the principal axis and the vertical line from the predicted position

to the principal axis is taken as the “ground-point.”
We explain three points: 1) In most situations, the detected

bounding box of an individual (especially an “isolated” person) is

accurate, so the intersection of the bottom line of the bounding box

and the principal axis can correspond well to the “ground-point.”

However, if the lower part of the individual is occluded or the

color of the lower part of the individual is close to the background,

the lower part of the individual may not be detected and this

intersection cannot be regarded as the “ground-point.” We use the

distance between the predicted position and this intersection to

check the occurrence of this situation. 2) The finally determined

“ground-points” of people in the previous frame are very accurate

as the correspondence results are used to update the estimated

“ground-points” (see Section 5). This makes the predicted

positions in the current frame very close to the real “ground-

points.” So, the estimated “ground-points” in the current frame are

accurate enough even when the lower parts of people are occluded

or cannot be segmented. 3) In practice, the prediction is not critical

since the change of positions of a moving object between two

consecutive frames is small. In fact, the “ground point” of a person

in the previous frame is near to that in the current frame.

666 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 4, APRIL 2006

Fig. 4. Detection of the principal axes of people in a group: (a) Input image.

(b) Detected foreground region. (c) Vertical projection histogram. (d) Segmented

individuals. (e) Principal axes.



4 CORRESPONDENCE BETWEEN MULTIPLE CAMERAS

In this section, we describe how detected principal axes are
employed to establish the correspondence across multiple views
given the homography constraint.

4.1 Homography Recovery

To ensure the existence of the homography, it is necessary to
assume that different views share a common ground plane. This
assumption is easily satisfied in most monitored scenes. We define
a 3� 3 matrix:

H ¼
h11 h12 h13

h21 h22 h23

h31 h32 1

2
4

3
5: ð4Þ

Let ðxi; yiÞ and ðx0i; y0iÞ be a pair of correspondence points on the
ground plane in two views. They can be associated with H:

x0i
y0i
1

2
4

3
5 ¼ h11 h12 h13

h21 h22 h23

h31 h32 1

2
4

3
5 xi

yi
1

2
4

3
5: ð5Þ

The homography H can be recovered from a set of static [12] or
dynamic [13] correspondence points. In the paper, the ground
plane homography is computed using several landmarks on the
ground plane.

4.2 Geometrical Relationship and Correspondence
Likelihood

Before the correspondence likelihood function for evaluating the
similarity of principal axis pairs across views is defined, the
geometrical relationship of principal axis pairs across views is
illustrated.

In Fig. 5,Lis is the principal axis of person s in view i andXi
s is the

“ground-point” ofLis.Ls is the principal axis of person s in 3D space,
and Xs is the ”ground-point” of Ls. g

i
s is the line acquired by

projectingLs onto the ground plane in 3D space from the direction of
the view of camera i. Obviously, Lis is also the projection of gis on
image plane i. For person k in camera j, Ljk, X

j
k, and gjk are similarly

defined. Let Hij be the ground plane homography from image
plane i to image plane j. LetLijs be the line in image plane j, obtained
by transforming Lis from image plane i to image plane j using Hij.
Obviously,Lijs is also the projection of gis on image plane j. LetQij

sk be
the intersection ofLijs andLjk. It is obvious that if person s in camera i
and person k in camera j correspond to the same person in 3D space,
Qij
sk corresponds to the “ground-point” of the principal axis of this

person in image plane j.
Thus, the distance between the detected value of “ground-point”

Xj
k and the intersection Qij

sk can be used to evaluate the correspon-
dence likelihood for the pair of principal axesLis andLjk. The less the
distance is, the more likely the principal axes are matched.

In the same way, we can acquire the intersection Qji
ks in image

plane i. The distance between the detected value of “ground-
point” Xi

s and the intersection Qji
ks also contributes to evaluate the

correspondence likelihood between Lis and Ljk. So, the function of
correspondence likelihood between Lis and Ljk is defined as:

< Lis; L
j
k

� �
¼ p Xi

sjQ
ji
ks

� �
p Xj

kjQ
ij
sk

� �
: ð6Þ

To specify the likelihood values pðXi
sjQ

ji
ksÞ and pðXj

kjQ
ij
skÞ,

without loss of generality, Gaussian distributions are assumed,
as we think that the noise in the detection is approximated to the
Gaussian distributions. We define pðXi

sjQ
ji
ksÞ and pðXj

kjQ
ij
skÞ as:

p Xi
sjQ

ji
ks

� �
¼ 2� �i

s

�� ��� ��1=2
exp � 1

2
Xi
s �Q

ji
ks

� �
�i
s

� ��1
Xi
s �Q

ji
ks

� �T� �
ð7Þ

p Xj
kjQ

ij
sk

� �
¼2� �j

k

�� ��� ��1=2
exp � 1

2
Xj
k�Q

ij
sk

� �
�j
k

� ��1
Xj
k�Q

ij
sk

� �T� �
;

ð8Þ

where �i
s and �j

k are two covariance matrixes. Since coordi-

nates x and y are independent, �i
s is a diagonal matrix with

two components ð�ixsÞ
2 and ð�iysÞ

2, and �j
k is diagonal with

components ð�jxkÞ
2 and ð�jykÞ

2.

The parameters of �i
s and �j

k are estimated with the mean of

each distance between the observation of the “ground-point” and

the corresponding intersection in each frame. In practice, �i
s and

�j
k can be regarded as independent of image positions, i.e.,

Pi
s ¼Pi and

Pj
k ¼

Pj .
To simplify the computation, we define the correspondence

distance (Dij
sk) for principal axis pairs according to (6), (7), and (8):

Dij
sk ¼ Xi

s �Q
ji
ks

� � Xi !�1

Xi
s �Q

ji
ks

� �T

þ Xj
k �Q

ij
sk

� � Xj !�1

Xj
k �Q

ij
sk

� �T
:

ð9Þ

The less Dij
sk, the more likely the pair of principal axes ðLis; L

j
kÞ

matches to each other.

4.3 Correspondence between Multiple Cameras

In this section, the defined correspondence distance is used to
match people. In the following, we first present the matching
algorithm for two cameras and then explain how the algorithm
generalizes to more than two cameras.

It is assumed that, at time t, M people with principal axes Li1,
Li2; . . . ; LiM are observed from camera i, and N people with
principal axes Lj1, Lj2; . . . ; LjN from camera j. Our correspondence
algorithm is to find the pairs of axes where the sum of the
correspondence distance values of the pairs is minimum. In this
way, the principal axes are matched as a whole to avoid the
potential errors caused by simply choosing the pair with the
minimum distance (i.e., the greedy way). The major steps of the
correspondence algorithm are listed as follows:

Step 1. People principal axes detected in the two views are
combined pairwise. A list (�) of all possible correspondence
pairs of principal axes is created. Correspondence distances of
these pairs are computed.

Step 2. For each pair fm;ng in the pair list �, it is checked whether
pair fm;ng satisfies the constraint Dij

mn < DT , where DT is a
predefined threshold to classify true or false correspondence
pairs. If not so, pair fm;ng is deleted from the pair list �. Then, the
pair list � contains pairs satisfying the above constraint.

Step 3. From the pair list �, we find all possible pairing modes. The
pair modes � with maximum number ðlÞ of pairs are selected and
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Fig. 5. Geometrical relationship between principal axes.



represented with � ¼ f�k ¼ ðLik1
; Ljk01
Þ; ðLik2

; Ljk02
Þ; . . . ; ðLikl ; L

j
k0
l
Þg,

where k is the index of a paring mode.

Step 4. In pairing modes �, we look for the pair mode (�) with the
minimum sum of correspondence distance values:

� ¼ arg min
k

Xl
w¼1

D
ði;jÞ
ðkw;k0wÞ

� � !
: ð10Þ

All principal axis pairs in pair mode �� are the matched ones.

Step 5. The pairs in pair set �� are labeled.
For more than two cameras, cameras can be combined pairwise.

For each pair of cameras, which have a common ground plane
area, correspondences between principal axes in the two views are
established using the above two camera correspondence algorithm.
If there is inconsistency of correspondence between the camera
pairs, the correspondence with less correspondence distance
defined by (9) is selected.

5 FUSION OF DATA FROM MULTIPLE CAMERAS

After all matched pairs are found, we can use the correspondence
information to improve the tracking results in each single camera
view when tracked people are within the common ground plane of
any two views. As the principal axis of a person in each view can be
detected robustly and accurately, the intersection of the principal
axis of the person in one view and the line obtained by transforming
the principal axis of the person from another view to the first view is
robust and accurate to correspond to the real “ground-point” of this
person in the first view. We use this intersection to update the
former observation of the ”ground-point” detected in the first view.
As shown in Fig. 5, on the condition that principal axes Lis and Ljk
correspond to the same person, the intersection Qij

sk is used to more
accurately estimate the “ground point” of Ljk. So, even when the
“ground point” of the person is invisible (occluded or not detected)
in both of the views, the intersection can be found and, thus, the
“ground point” of the person can be accurately located.

For more than two cameras, there are two or more such
intersections in one view for a person, when the “ground point” of
the person in 3D is also held by two or more other views. In such
cases, the mean of these intersections is selected as the “ground
point” of the person.

The accuracy of the detected “ground-point” in the current
frame insures that, if the person is occluded in the next frame, its
“ground-point,” which is determined using the predicted position
and the detected principal axis, is accurate enough to make the
correspondence correct.

Therefore, due to the detection of principal axes, prediction,
correspondence between multiple cameras, and date fusion of
multiple cameras, positions of people in different views can be
robustly located and tracked, even if the people are “in a group” or
“under occlusion.”

6 EXPERIMENTS

To verify our method, we have performed a number of experiments
on our own NLPR database and the open PETS2001 database.
Furthermore, some comparisons have been implemented.

In our experiments, a tracked person is represented with a
grayed bounding box (colored in color image). Different persons
are labeled with different grays (colors in color images). The
vertical line within the bounding box of the person is the principal
axis of the person, and the intersection of the principal axis and the
bottom line of the bounding box is the “ground-point” of the
person, which is updated by the corresponding “intersection, ” as
introduced in Section 5. Namely, the bottom edge line of the
bounding box is determined by the “ground point” of the person,
while the top, left, and right edge lines of the bounding box are
determined by the foreground pixels of the person.

In our experiments, the spread threshold is selected to be 0.1.
The valley threshold value ðCT Þ is selected as the mean value of the

entire histogram. The peak threshold value ðPT Þ is selected as
80 percent of the height of the foreground region. Threshold DT for
the correspondence distance is empirically set to 5.

6.1 Results on NLPR Database

Our NLPR video sequences are captured from outdoor environ-
ments, including Data Set 1 with two fixed cameras and Data Set 2
with three fixed cameras.

In Data Set 1, each video sequence consists of 8,000 frames. For
this data set, people are correctly detected, matched, and tracked in
two views in most cases, except the following two cases:

. People in the image plane are too small to be detected;

. Very serious occlusion exists and models of people cannot
be acquired beforehand due to few frames in which the
people have appeared.

Fig. 6 illustrates some frames of tracking and correspondence
results from Frame 3280 to Frame 3660. In this portion of video
sequences, four people enter the field of the two views in succession
and then leave. At Frame 3286, two people enter the second view so
closely together that the method for detecting principal axes of
people in a group fails to segment them apart. Furthermore, the
duration that they have appeared in the view is too short to construct
their models and, thus, the method for detecting principal axes of
occluded people is unusable. So, they are tracked as an individual.
However, they are successfully segmented and tracked after some
frames when they are not so close but still in a group (see Frame 3297).
From this figure, we can see that the principal axes of these people are
successfully detected, people are matched correctly between the two
cameras and their positions in the image planes are exactly located.

For Database 2, people are also correctly tracked and the correct
correspondences are made between all three views. Fig. 7
illustrates some frames of results from Frame 1 to Frame 160. In
this portion of the sequences, four people enter the fields of the
three camera views in succession and then leave. As shown in
Frame 33, two people enter the third view so closely together that
they cannot be segmented apart. At first, they are tracked as an
individual in the third view. Then, they are successfully segmented
and tracked after some frames (see Frame 54).

6.2 Results on PETS2001 Database

The PETS2001 database is the only open database available
currently for the research of visual surveillance. Many algorithms
[10], [11], [24], [25] have been evaluated on the database. We select
Data Set 1 in the database for testing. Data Set 1 consists of two
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Fig. 6. Tracking and correspondence of multiple people with two cameras: From

the top to the bottom, the frame numbers are, respectively, 3286, 3297, and 3380.



video sequences captured by two static cameras in outdoor
environments. In the whole sequence, all people having appeared
are correctly matched and tracked in the two views using our
method. Below shows and explains results of tracking and
correspondence under the situations of “in a group” and “under
occlusion.” To illustrate the tracking results clearly, only relevant
parts of each image are displayed in the following figures.

Fig. 8 illustrates some frames when a moving person and a
moving vehicle occlude each other from Frame 555 to Frame 601. In
this portion of the sequences, a person and a vehicle move toward
each other, meet, and then separate. At Frame 560, the lower part of
the person is occluded by the vehicle in View 1. After some time,
occlusion also happens in View 2, but the person occludes the
vehicle. During these occlusions, this person is still well-tracked and
matched using our method. Furthermore, the location of this person
in each view is still accurately estimated, even when the “ground-
point” of the person is occluded by the vehicle.

Fig. 9 shows an example of tracking and matching a group of
people even through occlusion. In this example, a group of three
people and a vehicle move toward, meet, and occlude each other

and then continue forward. It is noted that two persons in the
group are both dressed in similar black. This makes it difficult to
decide which person in one view corresponds to which person in
another view using only color information, e.g., color histogram
[3]. Furthermore, people interact with each other. In many frames,
the base of one of them is occluded by another person along the
vertical direction in View 2, and, in View 1, the bases of all of them
are simultaneously occluded by a vehicle. This introduces extra
difficulty for the processes of segmentation, tracking, and match-
ing. In this case, the existing feature points are very difficult to
extract and not reliable for matching. However, using our principal
axis-based method, individuals in the group are correctly
segmented, tracked, and matched.

6.3 Comparison

As discussed in Section 1, the existing methods for correspondence

between multiple cameras can be classified into region-based ones

and point-based ones. Color is the typical feature in region-based

correspondence. As color is highly unreliable for correspondence, it

is seldom used alone, but associated with other features. So, we only

compare our method with point-based correspondence methods.
It is difficult to directly compare point-based methods with our

method with respect to correspondence results, as different

methods have different geometric constraints and applications.

Although correspondence algorithms differ, the output of most

tracking methods is motion trajectories of objects. Thus, we take the

object trajectories as the basis of comparisons between our method
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Fig. 7. Tracking and correspondence of multiple people with three cameras: From
the top to the bottom, the frame numbers are, respectively, 33, 54, and 133.

Fig. 8. Tracking and correspondence of a person occluded by a vehicle with two
cameras: From the top to the bottom, the frame numbers are, respectively, 560,
578, and 590.

Fig. 9. Tracking and correspondence of a group of people through occlusion: From
the top to the bottom, the frame numbers are, respectively, 878, 908, and 940.

Fig. 10. Trajectories for comparison (the thin ones are acquired using our method
and the thick ones are centroid trajectories): (a) Trajectories in View 1.
(b) Trajectories in View 2.



and point-based tracking. We use centroids (i.e., centers of the

foreground regions corresponding to individuals or isolated

persons) as the chosen points because centroids are the most

popular feature points. The algorithm that we are comparing with is

derived from [11] since the geometrical constraint in [11] is similar to

ours. We compare the trajectories in the image plane. Since there is

no principle to directly determine which trajectory is more accurate,

we compare the centroid trajectory with the true centroid trajectory

obtained manually and compare the “ground point” trajectory with

the true “ground point” trajectory obtained manually too. We

measure the error of the centroid trajectory with the mean of the

distance between the estimated centroid and the true centroid in

each frame and the error of the “ground point” trajectory with that

between the estimated “ground point” and the true “ground point.”
A comparison is implemented on the portion of sequences of the

PETS2001 Data Set 1 from Frame 2127 to Frame 2150. In this portion

of sequences, a person walks along a road in two views. The

acquired trajectories in the two views are shown in Fig. 10. We select

the comparison results in Camera 1, shown in Fig. 11, for illustration.

The results of comparison in Camera 2 are similar to those in

Camera 1. The results shown in Fig. 11a are the comparison between

the trajectory obtained using our method and the true “ground-

point” data. The trajectory error for our method is 3.2 pixels. The

results shown in Fig. 11b are the comparison between the trajectory

acquired by tracking centroids and the true centroid data. The

trajectory error for the centroid trajectory is 5.8 pixels. From Fig. 11,

we can see that the trajectory acquired using our method is more

accurate and even much smoother than the centroid trajectory.

A similar comparison is implemented on the portion of

sequences of the PETS2001 Data Set 1 from Frame 250 to

Frame 625. This portion of sequences includes the sequences

shown in Fig. 8. There exists occlusion between a person and a

vehicle. The acquired trajectories in the two views are shown in

Fig. 12. Fig. 13 shows the comparison results, where the trajectory

error for our method is 2.2 pixels and the trajectory error for the

centroid trajectory is 4.5 pixels. If we only estimate trajectory errors

when the person is occluded in View 1 from Frame 555 to Frame

601, the trajectory error for our method is three pixels and the

trajectory error for the centroid trajectory is 6.5 pixels. From Fig. 13,

we can see that, when the person is occluded, estimated centroids

are always far apart from the true centoids; however, the estimated

“ground points” are near to the true “ground points.”
Both of the above examples show that our principal axis-based

method is more robust and efficient than the centroid-based one.

7 CONCLUSIONS

In this paper, we have proposed a novel principal axis-based
method for matching people across multiple cameras. In our
method, camera calibration is not needed and there is less sensitivity
to errors in motion detection. Principal axes and “ground-points” of
people in each single camera view can be well detected even when
the people are “in a group” or “under occlusion.” Our algorithm for
correspondence between multiple cameras is based on the fact that
the intersection of the principal axis of a person in a view and the
transformed principal axis of this person from another view
correspond to the “ground-point” of this person in the first view.
This intersection is used to update this person’s “ground-point”
detected in the single view. This makes it possible to locate people
accurately in the image plane even when they are partially occluded
in all views. Our method has been tested on several real video
sequences from the NLPR database and the PETS 2001 database. The
experimental results have demonstrated the effectiveness, effi-
ciency, and robustness of our method.

In our future work, we will consider nonplanar ground surfaces
and make use of appearance information to pair up nearby people
which could be confused.
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Fig. 11. Comparison: (a) Trajectory acquired using our method and true data. E ¼ 3:2. (b) Centroid trajectory and true data. E ¼ 5:8.

Fig. 12. Trajectories for comparison (the white ones are acquired using our
method, and the black ones are centroid trajectories): (a) Trajectories in View 1.
(b) Trajectories in View 2.
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Fig. 13. Comparison: (a) Trajectory acquired using our method and true data. E ¼ 2:2. (b) Centroid trajectory and true data. E ¼ 4:5.
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